Zero Emission Ammonia Production from Green Hydrogen

Could the future of renewable energy lie in a basic household chemical under your kitchen sink?  Ammonia might power your household cleaning and fertilize your plants, but it could become an important zero emission energy carrier for moving clean energy around the world economically. Oil & gas, which make up most of our current energy supply, can easily be shipped & stored, but renewable energy that travels through the power grid as electricity cannot.  This prevents renewables from becoming a bigger player in the world market of produced & distributed energy.  It’s also why researchers are working to streamline current processes to convert solar & wind energy into liquid ammonia which would allow it to be shipped around the world & stored as easily as petroleum products for those hot evenings & cloudy days when the wind isn’t blowing & the sun isn’t shining.

We need to master our ability to create cheap green hydrogen for essential ammonia production even if we leave the BEV-vs-FCEV passenger car debate completely out of the picture. The conventional manufacture of ammonia (NH3) is a dirty process.  But without ammonia, we would not be able to produce food for nearly 60% of the world’s population1.  Ammonia is made from nitrogen & hydrogen. Nitrogen molecules are separated from the air we breathe and hydrogen is generally derived from either natural gas or coal in a process which creates greenhouse gasses or about 1.8% of CO2 emissions worldwide2.  Once you have the nitrogen & hydrogen segregated, the Haber-Bosch process is employed to make ammonia.

Fritz Haber was a German chemist who received the Nobel Prize in Chemistry in 1918 for his invention of the Haber–Bosch process used to synthesize ammonia from nitrogen and hydrogen.

Projects are underway around the world that will change how ammonia is manufactured by using renewable solar & wind energy to create the hydrogen from water instead of steam reformed natural gas.  The implications of making “green ammonia” are bigger than just fertilizer too.   Liquid ammonia is also an energy carrier with a higher energy density (11.5 MJ/liter) than liquid hydrogen (8.5 MJ/liter)3.  Ammonia is easier and much cheaper to store & transport than liquid hydrogen because infrastructure & equipment can be used that already exists (e.g. propane infrastructure).  While there are many places around the world working on green ammonia pilot plants (Oxford, United KingdomFukashima, Japan –  Iberdola, Spain& more)  RMP thinks Australia is the world leader in the large scale pilot manufacture of green ammonia.  Australia has abundant renewable energy resources & potential resources available to boost their economy through the manufacture of green ammonia.

Practical Manufacturing of Green Ammonia & Its Energy Storage Potential

There are a number of reasons why Australia is the primary focus of RMP’s first report on green ammonia.  Australia is in the spotlight because of its massive resources and investment in renewable solar & wind energy.  Australia currently has 95 large renewable energy infrastructure projects that are in construction (or due to start construction soon).  These projects will deliver over $19 billion in capital costs, 11,007 MW of new renewable energy capacity and create 13,567 direct jobs4.  Each year terawatt hours of electricity are curtailed5 or go to waste because the electricity cannot be used at the time of generation.  It’s a problem that has and will continue get worse as more renewable electricity generation capacity comes online.

Battery storage solutions that only last for 24 hours or as peakers are great and serve very important purposes.  Battery storage projects also have great payback as short term energy solutions.  However, short burst solutions are part of the problem with massive demand for energy as they only satisfy a fraction of what is needed for base-load power over extended durations.  We need solutions like ammonia that will have costs scale down as usage scales up because of solar, wind, & hydrogen abundance.  Short term battery solutions become too expensive as they scale larger than the peaker size.  Batteries also are not the right solution if we need energy for days, weeks, months, and seasons.  It is one of the toughest problems to solve with renewable energy that has its highest output during hours when humans don’t need electricity and vice versa.  We need a way to store massive amounts of wasted electrical energy so we can have it back when we need it.  As more and more renewable energy comes online, cumulative curtailed electricity numbers will continue to climb without the means to store excess generation.

When in liquid form at ambient temperature, ammonia has an energy density of about 3 kWh/liter and if chilled to negative 35 celsius, ammonia’s energy density approaches 4 kWh/liter6.  Australia can use their vast renewable resources to achieve economical manufacture, production, and storage of green ammonia by simply buying electrolyzers that turn water into H2 & O2.  Australia can be on their way to making more green ammonia with proven technology that is easy to deploy.  While ammonia is an absolute societal necessity for agricultural fertilizer in an established world market, it also has even bigger economic potential as a carrier of energy.  Energy is a new market for ammonia that will displace oil & gas market share.

The Yara Pilbara Renewable Ammonia Feasibility Study is for a demonstration-scale renewable hydrogen and renewable ammonia production and export facility on the Burrup Peninsula, Western Australia.  Yara’s Burrup Peninsula facility currently produces ammonia by using natural gas as a feedstock for its steam methane reforming process, which produces fossil-fuel based hydrogen. The hydrogen is then used to feed an ammonia synthesis process to produce ammonia. Yara is investigating producing renewable hydrogen to feed its ammonia production process, which will reduce emissions produced by the facility.

yara pilbara
The Yara Pilbara pilot plant will make 30,000 tons of green ammonia that would otherwise be made with fossil fuels. This initial amount of green ammonia replaces 3% of the plant’s fossil fuel capacity. The plant could eventually scale up to 1,000,000 tons of solar PV green ammonia that would otherwise be made with fossil fuels. This is ammonia that already has demand predominantly for fertilizer. (Click image to enlarge).

In collaboration with global energy company ENGIE, the Yara Pilbara Renewable Ammonia Feasibility Study will investigate the feasibility of producing renewable hydrogen via electrolysis powered by onsite solar PV. Yara’s objective is that for the demonstration plant, up to three per cent of the hydrogen consumed on site will be renewable hydrogen. The blended hydrogen will subsequently be converted to ammonia and sold for further processing into domestic and international markets. The feasibility study will also investigate using seawater for the electrolyzer.

The feasibility study will help manufacture 30,000 tons of green ammonia that Yara currently would make using fossil fuels. The study will be the first step on the path to achieving commercial scale production of renewable hydrogen and ammonia for export7. In the long term, Yara is aiming to produce hydrogen and ammonia entirely through renewable energy. This approach will allow Yara to avoid any major augmentation to the existing plant and therefore minimise the cost and time needed to produce renewable ammonia.

This project has the potential to ‘unlock’ the value of vast areas of vacant Pilbara land by supporting the development of a new industry that captures solar energy for conversion to hydrogen and other valuable products.  Because project’s like Yara Pilbara are likely to surpass feasibility expectations similar to most renewable hydrogen projects, its $3.76m price tag is being funded in part by the Australian Renewable Energy Agency (ARENA) with a $995k investment.  The Australian government recognizes how making green ammonia for export can literally transform the continent into an economic powerhouse as renewable generation scales up.

Source: Yara (click to enlarge)

Australia’s government and scientific community want to make green ammonia a significant part of their future economic plans.  Australia has renewable resource potential to produce so much more energy than Australians alone can consume which means ammonia has significant export potential which can quickly increase sovereign wealth.  A challenge associated with using ammonia as a zero carbon energy carrier is “cracking” the ammonia back into its constituent elements nitrogen & hydrogen.  In order to make green ammonia more attractive as an export product, the Aussie’s are attacking this challenge with their top scientific researchers.  Enter Australia’s CSIRO.

Cracking Green Ammonia

CSIRO is Australia’s national science research agency.  The Commonwealth Scientific and Industrial Research Organisation (CSIRO), says their mission is to shape the future. CSIRO says it does this by using science to solve real issues to unlock a better future for Australia’s community, economy, & planet.  You may remember it was about two years ago to the month (8/08/2018) that CSIRO published a blog post about the successful refueling of a Toyota Mirai & Hyundai Nexo hydrogen fuel vehicle with ultra pure hydrogen “cracked” from ammonia using a brand new membrane technology created by CSIRO scientists.  The news humbly/quietly signaled a paradigm change in zero carbon energy for hydrogen fuel cell vehicles like busses, trucks, trains, airplanes, and passenger vehicles.  If  you have abundant renewable energy to produce green ammonia and a method to crack that ammonia back into hydrogen on demand, you literally have a game changer for green energy.

CSIRO Chief Executive Larry Marshall was one of the first to ride in the Toyota Mirai and Hyundai Nexo vehicles powered by ultra-high purity hydrogen, produced in Queensland using CSIRO’s membrane technology.  The membrane separates ultra-high purity hydrogen from ammonia, while blocking all other gases.  It links hydrogen production, distribution and delivery in the form of a modular unit that can be used at, or near, a refueling station.  This means that the transportation and storage of hydrogen – currently a complex and relatively expensive process – is simplified, allowing bulk hydrogen to be transported economically and efficiently in the form of liquid ammonia.

Demonstration of a Toyota Mirai hydrogen fuel cell vehicle refueled by hydrogen from ammonia “cracked” at CSIRO in Queensland, Australia.  CSIRO’s new membrane technology decomposes ammonia into its constituent elements nitrogen & hydrogen.  The hydrogen is ultra pure 99.999% (aka five nines) hydrogen which means it can refuel a Mirai like this one in about the same amount of time it takes to refuel a gasoline vehicle with similar range. Photo courtesy of CSIRO (click to enlarge)

“This is a watershed moment for energy, and we look forward to applying CSIRO innovation to enable this exciting renewably-sourced fuel and energy storage medium a smoother path to market,” Dr Marshall said.  BOC Sales and Marketing Director Bruce Currie congratulated CSIRO on the successful refueling of hydrogen fuel cell electric vehicles, which proved the effectiveness of CSIRO’s membrane technology from generation, right through to point of use.  With this successful demonstration under CSIRO’s belt, the technology will be increased in scale and deployed in several larger-scale demonstrations, in Australia and abroad.  CSIRO’s membrane technology will make green ammonia more attractive to foreign consumers who want to import the zero carbon energy carrier into their smog & CO2 belching countries.  This is particularly relevant for enormous nearby markets like China, Japan, and South Korea who have committed to hydrogen economies to decarbonize and de-smog their cities.

Worldwide Green Ammonia Distribution Logistics

Green ammonia will be competing with many other forms of energy that are fighting for investment dollars.  Ammonia has a couple tricks up its sleeves with regard to affordability & return on investment.  One of the key fuels that ammonia will compete with out on the open oceans is Liquified Natural Gas which has a very high volumetric energy content at 6 kWh/liter compared to ammonia’s 3 kWh/liter at ambient temperature or almost 4 kWh/liter if chilled to -35C.  RMP created our map of all LNG facilities in the world when Cheniere was granted the USA’s first permit to export LNG in 2011.  Green ammonia will have to compete with LNG that has grown significantly since RMP first wrote about Cheniere in August of 2015 just over five years ago.  America now has 5 LNG liquefaction facilities permitted for export & built since 2015.  These are carefully planned investment decisions on plants that take years to build.  Even the F.I.D’s on a new LNG plant can take years because of the risk of investing so much money over such a long horizon.

While LNG liquefaction has received significant investment in the past five years on assets that are expected to deliver for 25 plus year useful lives, LNG is at a severe disadvantage to ammonia for both maritime use & for maritime bunkering.  While ammonia has big advantage over all other 100% green energy carriers with energy density, its real secret weapon against grey and potentially “blue” fuels, like LNG, is its ability to use existing infrastructure like that used for LPGs (e.g. propane).   Financial investments with the strongest bang for their buck always win.  Green ammonia will be a fierce competitor with regard to economic return on investment.

green ammonia
Figure 4 from The Royal Society, Ammonia: zero-carbon fertiliser, fuel and energy store” Published February 2020.  This infographic shows the energy densities for various green & dirty fuels.  Where ammonia lacks in volumetric energy density versus hydrocarbons like LNG, it more than makes up for it in ease of use & cost effective bunkering for maritime use.

Because ammonia can be liquified at 7.5 bar at ambient temperatures similar to propane & butane, it has an advantage over LNG as a 100% green energy carrier  and could potentially hurt LNG investments as shipbuilders might prefer 0% zero emission vessels & cargo.  Ammonia easily fits this role of clean energy ambassador to enormous cargo ships with cheaper bunkering costs.  Ammonia bunkering costs will be orders of magnitude cheaper than LNG because of the liquefaction trains & cryogenic storage required for LNG.  There is great irony here in that for 10 years we have heard that hydrogen suffers from a “chicken or egg” problem but the truth is the chicken or egg problem befalls LNG to a much more significant degree than ammonia which means hydrogen’s chicken or egg problem also could rapidly become yesterday’s story.

For LNG, the dilemma has been that shipowners have been reluctant to make the switch to LNG as bunker fuel in the absence of ports around the world able to supply it. Yet, the development of the required infrastructure is dependent on such demand. As ammonia is already produced and transported in large quantities around the world by ship, bunker supplies could be readily accommodated, though of course it will have to be expanded once the first ammonia powered vessels are realized, says Niels de Vries, a Naval Architect with C-Job Naval Architects in the Netherlands.

“Nowadays the main consumer of ammonia is the fertilizer industry,” he says. “This industry is supplied by ships which carry ammonia in bulk loads of up to 60,000 dwt. The industry’s existing infrastructure could be used to realize bunker locations for ships in the future, and current production offers the possibility of a smooth transition. There are ports available already that could supply the first ships.”

Vigor, the Pacific Northwest’s biggest shipbuilder, has launched the Harvest, the first liquefied ammonia barge built in the US since 1982. It was built for the Mosaic Co. of Minnesota, a leading producer of concentrated phosphate and potash fertilizers, and will be operated in the Gulf by a subsidiary of the Savage Company. The 508-foot hull was constructed at Vigor’s HQ and base facility, the Swan Island Shipyard in Portland, with the assistance of other Vigor divisions in the region. Photo courtesy of Vigor. (Click to enlarge)

Shipbuilders are/were already ready to make an economic case for using ammonia as low emission fuel by combusting it and scrubbing NOx.  But, with ammonia cracking technology like that mentioned by CSIRO that can turn ammonia to hydrogen on demand, you don’t need to combust it because you can use it in a fuel cell which has more than 2x the efficiency of a combustion engine with zero harmful emissions.  All of the sudden, the economics you could use to justify ammonia as fuel have just gotten twice as good & your emissions drop to zero.  It really bodes well for ammonia as a green energy carrier.  Speaking of CSIRO’s technology to crack ammonia into N2 & H2, phys.org just published a recent article August 19, 2020 regarding a new low-cost membrane technology developed by the Korea Institute of Science & Technology (KIST) to decompose ammonia into high purity hydrogen & nitrogen.  More evidence top research authorities like CSIRO & KIST are demonstrating scientists around the world are working fast to unlock the potential of green ammonia.  You can bet there are some labs in the USA & UK that will be touting some similar breakthroughs soon.

RMP had to squeeze in two photos of the new liquified ammonia barge Harvest because life is short and boats are cool.  Look at the size of this massive vessel.  The enormous self-climbing gantry crane was used to lift and position the 680-ton bow and the 470-ton stern modules.  Harvest contains four 1,100 ton ammonia tanks each having a capacity of 5,500 tons of ammonia.  This American made ship created over a million labor hours of good American jobs in Portland Oregon.  We can build more of these and make a significant amount of our energy domestically with green ammonia. Photo courtesy of Vigor. (Click to enlarge)

Recent advances in renewable energy technology have set up the new 2020 decade for continued scaling in the manufacture of zero emission ammonia for sustainable energy.  Because hydrogen is inexhaustible, abundant, and in every local community, it could mean economies of scale could make hydrogen very cheap as old petroleum infrastructure could be retrofitted for ammonia storage & distribution.  Ammonia is already transported by ocean freight by big ships like Vigor’s 508 foot hull Harvest recently built supporting millions of labor hours in America’s pacific northwest Portland area8.  The Harvest was built by American workers using over 9,000 tons of American steel & 4,400 tons of equipment.  The Harvest has four cargo tanks, each capable of holding 5,500 tons of liquid anhydrous ammonia at very low pressure.  This was the first ammonia vessel built in America since 1982!   Think about all the jobs & labor hours America could generate to make even more ships like this that transport ammonia safely across our oceans.  Speaking of safety, we need to talk about safety & toxicity in more detail.

Ammonia’s risk profile is similar in magnitude to methane or methanol.  For ammonia, the main risks are related to health, as ammonia is toxic.  Ammonia’s fire risk profile on the other hand is lower. Ammonia can be stored as a liquid either at -34 degrees Celsius at atmospheric pressure (usually applied for large scale applications) or at room temperature at 10 bar (usually applied for small scale applications).  RMP’s stated mission as a non-profit 501(c)3 organization is to protect our fresh water resources.   Toxic & water are two words that need to always be separate to protect drinking water.  How does RMP recommend a toxic substance, ammonia, and reconcile that position with our mission statement of protecting Michigan’s and the world’s fresh water resources?

Reconciling ammonia’s toxicity with RMP’s mission of protecting freshwater

Ammonia is a product necessary for humans to survive.  Ammonia is a naturally occurring compound being created in your body’s cells right now as you read this sentence.  Ammonia will continue to be manufactured, stored, and transported in the future the same way it is now and has been used in industry for over 100 years.  Like all energy carriers & fuels, ammonia is dangerous and must be handled with appropriate safeguards.  RMP was founded on protecting fresh water and eliminating the use of fossil fuels.  RMP specifically wants to eliminate crude oil from our energy mix first as it causes great harm to our fresh water resources.  Crude oil, gasoline, diesel, and other fuel oils contaminate water wherever they are produced, stored, & distributed.  Crude oil has environmental remediation costs that drain public budgets & and ruin our environment irreversibly no matter how much we spend to try to clean it up. Famous spills like the Exxon Valdez that happened in April of 1989 are still costing money to clean up today9.  That’s just one example of literally thousands of major instances.  Right here in our backyards of Michigan, we remember the Enbridge Line 6B pipeline disaster just over ten years ago that RMP wrote about on its 5 year anniversary.   Ammonia is different in relation to environmental disasters; it’s not like fossil fuels.  While ammonia can cause fish kills on release and can be deadly, its toxicity to the environment is temporary.

As soon as ammonia is released into the environment, it begins neutralizing.  Spilled ammonia, while toxic, will quickly dissipate reacting with moisture to form ammonium. Ammonium then quickly binds to negatively charged soil, organic matter, and clays. Ammonium rarely accumulates in soil because bacteria will rapidly convert the ammonium that is not taken up by plant roots into nitrates (nitrification)9.  Yes ammonia is toxic & can cause accidents that could turn deadly if they’re not handled safely; this is the same with all fuels.  The difference with ammonia is that spill or release events will always be isolated and short term clean ups.  When I think of a serious ammonia accident, I’m reminded of when I was young and I would share my scientific theories with my dad.  My dad would remind me of La Chatlier’s principle of chemical equilibrium.  Ammonia is a good example of something toxic that quickly finds an equilibrium with the environment to form something non-toxic.  I’m glad my dad taught me about La Chatlier’s principle because there is going to be FUD surrounding ammonia just like any other fuel we use.  RMP knows, no matter what form of energy we use, there will be people who oppose it [viciously].

RMP supports green ammonia as part of the solution of clean renewable energy that is safe for the environment.  While dangers exist with ammonia like any other high energy density medium, imagine the flip side:  without ammonia nearly 60% of the world’s population would perish from starvation.   The possibility of an accident is the risk to pay to avoid certain calamity if there was no ammonia.   When the ammonia FUD comes and people say the sky is falling, remember this paragraph.  Ammonia has been in use around the world for a century.  No one has any reason to panic, but ammonia certainly needs to be handled safely similar to any other fuel we use today.

Here are three bullet points from the CDC’s Frequently Asked Questions page regarding ammonia when it enters the environment:

  • Ammonia is found throughout the environment in air, water, soil, animals, and plants.
  • Ammonia does not last very long in the environment. It is rapidly taken up by plants, bacteria, and animals.
  • Ammonia does not build up in the food chain, but serves as a nutrient for plants and bacteria.

Again, the points listed above are not to diminish the serious toxic & safety hazards associated with ammonia and the importance of following strict safety protocols to prevent injury, death, or fish kills in an accidental release.   Ammonia, like all other forms of substantial energy carriers comes with strict safety protocols for manufacture, handling, storage, and distribution.

RMP hopes to have made clear in this article why the  leaders and the scientific community in Australia are all in on green hydrogen & piloting green ammonia plants & commercializing technology to crack ammonia into N2 & H2.  In less than one week, on August 27 & 28, 2020, the Australian Chapter of the Ammonia Energy Association will host their 2ND Ammonia = Hydrogen 2.0 Conference (virtual this year due to COVID-19).  The conference will be hosted from Monash University based in Melbourne Australia on the south coast. 

Australia currently has 95 large renewable energy infrastructure projects that are in construction (or due to start construction soon).  These projects will deliver over $19 billion in capital costs, 11,007 MW of new renewable energy capacity and create 13,567 direct jobs.  Source: Australia’s Clean Energy Council (click to enlarge)

China, Korea, & Japan are all in on green hydrogen and will leverage Australia as a regional trading partner.  Australia can provide clean hydrogen energy in a format with a similar economics & logistics to petroleum without the nasty BTEX environmental traits that are silent killers of sovereign wealth. Europe is also expected to be a dominant green ammonia producer according to this article.

Currently, China must invest in all sorts of remote places places in Brazil, Africa, Canada, the USA, and the Middle east to get the coal, crude oil, natural gas, & NGLs  it so desperately needs to provide energy & industrial feedstocks for its over 1.3 billion power hungry consumers.  What if China could do away with crude oil boondoggles & all those far away countries and get clean green energy from domestic production supplemented by a nearby trading partner like Australia?  This is why RMP writes about China’s extensive economic investments into the manufacture of green hydrogen & fuel cells all across China.  The exact same goes for Japan & Korea.  For those who find interest in the study of chemistry & economics, it’s not difficult to see why so many people around the world are investing sovereign wealth into green ammonia and the hydrogen economy.  Green ammonia is a stepping stone on the critical path to a decarbonized society.

Final Conclusion

There are different battery chemistries (NiCd, NiMH, Lead Acid, Li-ion, low cobalt li-ion, lithium polymer) that compete with each other for practical real world applications.  There are many different types of fuel cells (PEM, SOFC, PAFC, Alkaline) that also compete with each other for practical applications.  All will have roles to play with some more dominant than others just like a sports team made up of great athletes.  Similar to the way an artist needs all of the colors in the spectrum on their palette to paint a masterpiece, getting to 100% carbon free energy will need every battery chemistry & fuel cell type to compete with each other on the same canvass of human needs.  Because different types of energy are competitors, it does not mean they must be enemies.  This is true for humans too.

A lot of human energy goes into arguing about batteries vs hydrogen but clenched fists cannot reach for olive branches.  All the battery chemistries & types of fuel cells can compete & coexist in an inclusive arena that understands we will need batteries for some green energy storage & hydrogen for other green stuff.   For example, we will need green hydrogen to make green ammonia because ammonia is essential for life.  And, as long as we invest in green ammonia to make it cheap & abundant, we should also use it as an energy storage medium with a high energy density that replaces the oil & natural gas we use now.  Imagine blue skies & pure drinking water for everyone around the world.  Think about so many people here in America and those around the world who should not have to breathe NOx & SOx pollution because they live near a power plant.  We have hundreds if not thousands of people now living next to SOx & NOx fumes right here in Detroit near Zug Island & DTE’s River Rouge plant.  I know Detroit needs big energy to forge metal & make the cars and trucks that keep America moving, but yuck.  Just yuck.  We gotta just stop with dirty energy.  Ammonia can provide the energy needed to make clean steel in a very cost effective manner here in Detroit, the same way as it can in Australia or Asia.

RMP is a Michigan registered & federal 501(c)3 non-profit organization.  RMP writes about and advocates for clean energy that helps protect our freshwater resources here in Michigan and around the world. RMP also makes maps of clean & dirty energy infrastructure using the Google Maps API.  Follow us on Twitter and like us on  Facebook.  Please click here to make a tax deductible donation to RMP to help us keep publishing free content with no ads & energy infrastructure maps.

The featured infographic image for this post comes from the Iberdola Spain green ammonia pilot plant.  The Iberdola green ammonia plant will be a $177M investment, create 700 jobs, and eliminate 40,000 tons of CO2 each year.


Footnotes:

Footnote #1“Yara Green Ammonia” YouTube, uploaded by Yara International November 2019 @ 17 second mark of 1:54 video. https://www.youtube.com/watch?v=cVwDeMPcJio

Footnote #2–  The Royal Society, “Ammonia: zero-carbon fertiliser, fuel and energy store” Published February 2020 – pp4. https://royalsociety.org/-/media/policy/projects/green-ammonia/green-ammonia-policy-briefing.pdf

Footnote #3 – Frontiers In Energy Research, “Ammonia as a suitable fuel for fuel cells” last modified August 2014 https://www.frontiersin.org/articles/10.3389/fenrg.2014.00035/full

Footnote #4 – Clean Energy Council “Project Tracker” last updated June 2020 https://www.cleanenergycouncil.org.au/resources/project-tracker

Footnote #5 – ScienceDirect “Sunny with a Chance of Curtailment: Operating the US Grid with Very High Levels of Solar Photovoltaics” November 2019 https://www.sciencedirect.com/science/article/pii/S2589004219303967

Footnote #6–  The Royal Society, “Ammonia: zero-carbon fertiliser, fuel and energy store” Published February 2020 – pp7. https://royalsociety.org/-/media/policy/projects/green-ammonia/green-ammonia-policy-briefing.pdf

Footnote #7–  Australian Government – Australian Renewable Energy Agency (ARENA), “Yara Pilbara Renewable Ammonia Feasibility Study” Published February 2020 https://arena.gov.au/projects/yara-pilbara-renewable-ammonia-feasibility-study/

Footnote #8–  Pacific Maritime Magazine, “New Liquefied Ammonia ATB tank barge” Published November 2017 https://www.pacmar.com/story/2017/11/01/features/new-liquefied-ammonia-atb-tank-barge/557.html

Footnote #9–  Anchorage Daily News, “Don’t let government give up on Exxon Valdez restoration” Published June 2020 https://www.adn.com/opinions/2020/06/18/dont-let-government-give-up-on-exxon-valdez-restoration/

Footnote #10–  Minnesota Department of Agriculture, “Ecological Effects of Ammonia Published on the Nitrification Cycle information page. https://www.mda.state.mn.us/ecological-effects-ammonia#:~:text=Ammonia%20in%20Air%20and%20Soil&text=Ammonium%20then%20quickly%20binds%20to,roots%20into%20nitrates%20(nitrification).

USA & CANADA QUARTERLY H2 INFRASTRUCTURE UPDATE 2020-Q1

Welcome new readers of RMP’s quarterly H2 infrastructure report.  Each quarter we look back on the major stories related to hydrogen infrastructure advancements and we compare the current AFDC database to the AFDC database in the prior quarter to see what has changed.  The AFDC database is updated by the US Dept of Energy & can be found by clicking here.  Canada does not have a centralized database of alternative fuel vehicle information so we collect Canadian data by hand.  Ok, on with the report…

The opening quarter in 2020 has many important headlines but there are two major events for hydrogen infrastructure in North America that will be the focus of this article:  1) On March 5, 2020 the California Public Utilities Commission (CPUC) approved the Fuel Cell Energy & Toyota collaboration micro grid project that will use directed biogas from cow manure to produce 100% renewable #hydrogen for Class 8 trucks at the Port of Long Beach & the Port of Los Angeles. 2) On January 31, 2020 Air Products & the Orange County Transit Authority opened the largest fast fill hydrogen refueling station in America at OCTA’s Santa Ana Bus Base on the banks of the Santa Ana River in Southern Los Angeles.

The significance of the Project Portal approval is well conceptualized with a famous economic analogy.  One of my favorite authors, Reed Jacobson, once wrote something in a computer programming book that has stuck with me for over 20 years:  “Long before Henry Ford, and even before Marc Brunel, the economist Adam Smith reasoned that in a single day, a single worker could make only one straight pin, but ten people could subdivide the work and create 48,000 pins in the same day—an almost 5,000-fold increase in productivity.”   The concept Reed was teaching in that one sentence was the concept of writing a ‘loop’ in a computer language.  A loop is a chunk of computer code called a subroutine that specializes in one purpose & therefore can execute its special purpose very fast.  If you spend the time to get that loop set up correctly, its payback to you in terms of run-time execution & lines of code reduced, is 5,000-fold.  That powerful concept has helped improve productivity in our economy for hundreds of years in many different industries as well as helped me write more effective code for over twenty years now. Continue reading “USA & CANADA QUARTERLY H2 INFRASTRUCTURE UPDATE 2020-Q1”

December 2017 – USA Public H2 Fueling Station Update

RMP will begin publishing regular updates of H2 infrastructure build out going on in the USA starting with this very post. RMP created a map several months ago to show all H2 stations in the USA, which you can see by clicking here. Currently, public H2 fueling stations have been predominantly located in California. And, while California continues to be the only state with significant infrastructure to support a fleet of vehicles, the activity there is picking up at a pace not seen over the past couple years. The eastern seaboard has also entered into the public H2 infrastructure game with multiple stations in the planning phase. Things are Continue reading “December 2017 – USA Public H2 Fueling Station Update”

Paradoxical Petroleum Pipeline Protest Problem

Cars that burn gasoline and trucks that burn diesel go together with oil pipelines like a bow goes together with an arrow; without one the other is unnecessary or useless. How can you get rid of the oil if you don’t do anything about the very thing that gives oil its demand?   This is an economics website and the dependency of oil and internal combustion engines is economics 101. I’m compelled to write about this issue again and again to call out my fellow environmentalists as absurd to protest oil pipelines without investing at least an equal amount of their time in supporting hydrogen fuel cell vehicles & the fueling infrastructure to support them. You cannot get rid of oil pipelines without getting rid of internal combustion engines.

We environmentalist types want to stop the use of oil for several good reasons: it will create Continue reading “Paradoxical Petroleum Pipeline Protest Problem”

Carbon Capture & Sequestration (#CCS) – Michigan’s Leading Role

Respectmyplanet.org (RMP) is a Michigan based 501(c)3 organization dedicated to water conservation through smarter energy production & waste management logistics. RMP, like many environmental groups, advocates for the increased adoption of wind energy and solar energy to meet the world’s energy needs. RMP advocates for the adoption of fuel cell electric vehicles for cleaner air, a stronger economy, and energy independence.  RMP seeks common sense energy solutions to wean ourselves off of oil & coal and to improve our economy and national security. To read RMP’s thesis post on the responsible migration away from crude oil as an energy source you can click here.

Regional Carbon Sequestration Partnerships (RCSPs)
Seven different Regional Carbon Sequestration Partnerships (RCSPs) have been established by the US Department of Energy to help develop the technology, infrastructure, and regulations to implement large-scale CO2 storage. (Credit: US Dept of Energy)

RMP understands, however, coal and crude oil will be around years to come even if we try our best to adopt better alternatives for producing energy. RMP takes a rational, common sense, & global approach about energy feed stocks like crude oil & coal.  We have to do our best to mitigate adverse effects from fossil fuels as long as we continue to use them.

This post is about Carbon Capture & Sequestration (#CCS) in Michigan and RMP’s exclusive new map of all #CCS wells in Michigan. Even as RMP advocates for the responsible migration away from crude oil as an energy source, RMP supports #CCS oil production as a means to keep our American workers working as we wean ourselves off of oil and work to build clean and sustainable hydrogen infrastructure for future generations. Michigan is well poised to produce secondary recovery oil by sequestering CO2.  Michigan can be a leader in this technology’s research and development.  #CCS technology learned and proven in Michigan can be exported to help poorer countries that will be burning coal for a long time to come.  India, for example, on October 2, 2016 signed the Paris Climate Agreement which is almost fully ratified.  Indian President Narendra Modi called on fully developed countries like ours to export technology like Michigan’s #CCS tech to help India produce cleaner energy. Later in this post we will go over why Michigan is well suited to truly be a global leader in R&D for #CCS technology, but first let’s go over the basics of #CCS.

What is Carbon Capture & Sequestration (#CCS)?

If you’ve been following RMP, like you should be on either Twitter or facebook, you already know what Carbon Capture & Sequestration is. Carbon Capture & Sequestration (also known as #CCS) is the capture of Carbon Dioxide from anthropogenic sources like power plants, cement manufacturing, and fertilizer manufacturing where the CO2 is piped to an abandoned oil well and pumped underground rather than being released to atmosphere.   CO2 is a greenhouse gas (GHG) and there is broad consensus amongst scientists that our planet’s climate is being impacted in a negative way by human activities like producing energy using fossil fuels that emit CO2 when burned. You’ll often hear the term anthropogenic CO2, which means CO2 produced by human activities as opposed to naturally occurring CO2.

#CCS Carbon Capture & Sequestration
Merit Energy’s #CCS unit in Kalkaska, Michigan. The well pictured, the State Kalkaska F 2-24 WIW, is a water injection well that is part of a three well #CCS unit. Often times in Enhanced Oil Recovery (EOR) there are two methods to “shape” the recovery of Remaining Oil In Place (ROIP) within the reservoir. Sometimes the first part of EOR using #CCS is called the immiscible portion of the project whereby water is injected into the reservoir. The second part, the miscible portion, is when the CO2 is injected into the reservoir. Immiscible means that water and oil do not mix, and miscible means that CO2 & oil do mix.

The Midwest Regional Carbon Sequestration Partnership (MRCSP) is a great place to start if you want to learn about #CCS in Michigan or other Midwestern states. The US Department of Energy has divided North America into seven different Regional Carbon Sequestration Partnerships (RCSPs) and Michigan falls into the MRCSP. RMP encourages you to check out the MRCSP website and to read about the many things going on in our region. You can also check out the US Dept of Energy’s Carbon Capture & Storage Resource Center’s webpage by clicking here. I also encourage you to read Senate Bill S.3179 which is new legislation being sponsored by Heidi Heitkamp that incentivizes #CCS by offering up to a $20 per metric ton credit of CO2 sequestered into a secure geologic formation.

An estimated 1.2 billion barrels of potential oil recovery by CO2-EOR was calculated for our MRCSP region based on available data for 265 oil fields in the Midwest. Oil and gas reservoirs within the MRCSP region have an estimated storage resource capacity of 8,511 million metric tons (MMt). Based on an estimated 850 MMt per year of CO2 emissions, these reservoirs could sequester approximately 10 years worth of CO2 in our region.(1) Detailed reservoir characterization, geologic mapping, and modeling and simulation at the field-scale level are the next steps required to delineate prospective areas for future pilot floods and to plan successful CO2-EOR and sequestration projects within our region.

CO2 Wells in Michigan
This is a static map of all CO2 flooding EOR units in Michigan. This map is the kind you often see on most websites, a static screenshot. RMP, however, hosts this map as an interactive map where you can zoom in, click on the markers, get access to the well files, upload pictures to the location & more! Scroll to the bottom of this post to see our interactive map, or click here to open our new interactive map of Michigan CO2 wells in a new window.  Click image to enlarge.

In addition to geological considerations, other factors that come into play when evaluating CO2-EOR potential in a region include (1) location and availability of CO2 sources (e.g., power plants, steel mills, cement plants) and proximity to oil reservoirs, (2) well spacing, (3) unitization issues, (4) location of improperly plugged wells and well-bore integrity, and (5) economic considerations.

The Department of Energy has divided the process of #CCS into three distinct phases which have been ongoing for years now.   Phase 1 was the characterization phase which led to the Carbon Sequestration Atlas of the US & Canada which was last updated in 2012. Phase 2 was the validation phase where 20 small scale geologic storage tests were completed to validate reservoir simulation models, demonstrate accounting methods, and develop guidelines for future projects. Phase 3 is the development phase which is where we are now. Currently there are only six sites throughout the US & Canada that are undergoing Phase 3 long-term CO2 injection projects to validate the science on storage of large volumes of CO2. Michigan is home to one of those six sites.  The Dover 2-33 well in Otsego County, which is pictured as the featured image on this post (photo credit: MCRSP) is a well in this small cadre of exclusive projects in North America. As of August 31, 2016 Michigan’s Dover 33 EOR Unit (as it’s called) has sequestered 580,687 tons of CO2, produced 515,284 barrels of oil, provided 170 jobs yielding more than $7.1 million dollars of income, generated $1.3 million in severance & sales taxes, and provided $3.6 million of other taxes & royalties(2). We’ll talk more about what’s going in Michigan with #CCS later in this post.

Why is #CCS Important?

We must face the reality that fossil fuels will be in use for years to come.  We must mitigate damaging effects of producing energy from fossil fuels while we work earnestly to move away from them.   RMP uses data and science to support our work and we are hoping  folks  will educate themselves about the ugly truths regarding energy production and why it’s important to face facts.   RMP hopes that impassioned environmentalist types against fossil fuels will do more than just cheerlead wind & solar.   Supporting wind & solar are great initiatives, but we have to give consideration to the reality of fossil fuels in our lives, our dependency on them, and how we can reduce pollution from them while we work to get off of them.

CCS Carbon Sequestration
This is a representation of a CO2 injection well in Michigan prepared by Batelle. In this example, the Otsego Central Processing Facility separates CO2 from CH4 in raw Antrim gas. The CO2 is piped over to an injection well and about 6,000 feet to a Niagaran Pinnacle Reef formation (orange bubble near bottom of image). That CO2 “pushes” the oil over to the production well where the pressure forces it up to the surface. The CO2 is removed from the oil again and piped back over to the injection well.

If fossil fuels were eliminated overnight there would be big problems because of disruptions to our energy needs. This is because crude oil and coal have become an entrenched part of our economy and energy mix over decades.   Crude oil and coal didn’t come about overnight and they’re not going to disappear overnight. RMP is a leading non-profit research & watchdog organization of oil production in Michigan and we take on the API on a regular basis with regard to avarice, ignobility, and their misleading ad campaigns. RMP understands, however, that ending the use of crude oil for energy will be a migration that takes time and we must protect the workers who will need new jobs as we make a transition to smarter forms of energy production. RMP will never give the API or their cohorts a free pass for misleading the public, but we have to be realistic about our own culpability in the energy infrastructure that surrounds us today. RMP advocates for education and understanding with regard to our own complicity of oil usage in our economy; pots calling kettles black will get us nowhere. We all must work together to learn geology and energy science to make real progress.

 

#CCS
The MRCSP surveyed multiple locations within our midwest region for Phase 2 sequestration projects. In all of North America, Michigan now has one of only six Phase 3 sequestration projects underway in all of North America. (Image Credit:  MRCSP)

#CCS is a must for becoming GHG Negative and keeping American oil field workers employed while we ramp up new and less volatile jobs in a sustainable hydrogen economy.  Producing oil from the sequestration of CO2 is one of the ways environmentalists and an oil industry in its winter years should be able to find common ground.

#CCS is important right now to help us make an impact on reducing anthropogenic GHG emissions to atmosphere. Not only is coal going to continue to be an part of providing energy for American consumers for years to come, it is integral to bringing energy to developing countries around the world. Coal is also used in the manufacture of cement all over the world. Fertilizer production is also a large contributor of CO2. There is no magic wand to wave when it comes to a creating a carbon neutral or GHG negative economy.

RMP recently blogged about how ExxonMobil is poised to be one of the biggest difference makers in reducing GHG emissions because of their partnership with Fuel Cell Energy using #CCS & molten carbonate fuel cells.

#CCS is an immediate concern.  We must reduce GHGs from established sources that currently produce a majority percentage of our energy and will continue to persist for the foreseeable future. The longer term concern is developing new energy infrastructure that does not produce GHGs like wind & solar coupled with the production of hydrogen for fuel cells.  Making H2 for storage from wind and solar is important for using renewable sources for base load energy for those times when the sun isn’t shining or the wind isn’t blowing.

#CCS carbon dioxide
As of June 21, 2016 the atmospheric concentration of CO2 registered at 406.6 ppm.  This is the brand new statistic from the famous Mauna Loa Observatory that everyone has been talking about all week long. As you can see from the this graph, the atmospheric concentration of CO2 is rising steadily and the #1 contributor is power generation through the combustion of coal. RMP works hard to educate people about how coal & natural gas can be used without combustion and without releasing CO2, SOx, NOx, Mercury, or particulate matter to atmosphere. Solar and wind are great and RMP advocates for them, but this graph trend will not change without #CCS. If you don’t think #CCS is higher priority than solar & wind growth for climate change, you’re peddling junk science. (source: Scripps Institution of Oceanography)

Michigan can be a leader for #CCS technology in the world. Developing and proving out the processes of capturing and sequestering CO2 can be shared with countries like India, China, and many other countries that will be using coal for decades to come.

What Is Going On With #CCS In Michigan?

Michigan has 10 different EOR units employing #CCS made up of 37 wells. One unit is in Kalkaska and the other 9 are in the Gaylord area. You can click here to see RMP’s map of all of Michigan’s CO2 sequestration wells or you can scroll to the bottom of this post to see our brand new CO2 sequestration map of well units. RMP has been developing PHP, JavaScript, and MySQL software using the Google Maps API v3 for over 7 years now. RMP’s new #CCS interactive Google map is one of the new showcase features we can program up that you just can’t find elsewhere on the Internet. RMP’s Michigan made software is becoming more powerful by the month and soon major upgrades are going to be implemented to make our maps even more user-friendly and easy to use. It’s easy to make a Google Map of restaurants or store locations, but RMP’s software is much different. RMP’s environmental mapping software allows us to use SQL queries to map specific data that can help scientists and educators get the maps that matter.

CO2
Roughly three quarters of all CO2 emissions come from power generation. This is why RMP advocates for coal gasification, HELE coal plants, and carbon dioxide capture & sequestration. Coal is going to be used for decades to come whether you would like it not. We might agree that solar & wind are capable of providing all of our energy one day, but that day is in the future. Let’s focus on science and education and stop witch hunting energy producers. We need to work together on solutions that make progress.  How can energy consumers have any less culpability than energy producers?  We must get rational and speak out against the fear mongering and junk science rhetoric of groups like Sierra Club, Food & Water Watch, and so many others that  ironically threaten our environment and water more than they help it.

RMP has been publishing our Michigan Oil & Gas Monthly watchdog magazine for two years now and we have been writing about a Michigan company named Core Energy LLC. Core Energy LLC is a leader in Michigan #CCS and is one of the only operators in Michigan currently capturing and sequestering CO2 into secure geologic formations. Core is the only operator in Michigan currently executing a US Department of Energy Phase 3 long term high-volume CO2 sequestration project. Merit Energy & Jordan Development are also pursuing #CCS in Michigan to a lesser extent.

In EOR using CO2, one or more wells are the injection wells and one or more wells are the producing wells. The idea is that the injection well is being used to push the oil over to the other well. Think of two straws poked vertically through the lid on either end of a shoebox where the shoebox is the hydrocarbon reservoir and the straws are the well bores.   You inject something, in this case CO2, down the one straw into this closed loop system and that injection forces something out the other straw.

Michigan is a great test bed for developing #CCS technology because we have all the proper ingredients to make it cost effective. Remember RMP’s philosophy: always follow the money. If things can’t be done economically, they won’t get done. Money always has a critical role in energy projects. The cost of developing new technology is always higher because there is a learning curve associated with it. Michigan has a lot going for it with regard to #CCS because we have an abundance of all the ingredients to help keep the R&D costs of #CCS projects low. Let’s look at the fundamental things needed to make a #CCS project economical:

  • You need formations that can accept the CO2 and produce oil which helps offset the costs of the R&D, labor costs, and CO2 infrastructure costs. Michigan has 800 known Silurian (Niagaran-Age) Pinnacle Reefs in our Niagaran formation from Manistee to Gaylord and then some.
  • You need oil & gas know-how, infrastructure, and regulatory agencies that can oversee the safety of the project and the protection of our most valuable natural resource: fresh water. Michigan has thousands of wells drilled into the Niagaran formation, experienced operators, and we also have the MDEQ to oversee regulatory requirements to protect our fresh water.
  • You need an abundant supply of anthropogenic carbon dioxide nearby to pipeline over to these Niagaran wells in order to pump the CO2 underground and sequester it. Michigan has thousands and thousands of Middle Devonian Antrim Shale gas wells very near the Niagaran wells that produce roughly 80% natural gas and 20% carbon dioxide.  The Antrim makes over 1 million tons of CO2 each year that has otherwise just been vented to atmosphere.

Michigan is a prime candidate to develop #CCS technology as we meet all the main requirements very well. This is why the US Department of Energy chose Michigan as one of only six sites developing Phase 3 #CCS projects in the United States and Canada. Michigan’s Middle Devonian Age Antrim Shale generates approximately 1.2 million tons of carbon dioxide each year from six central processing facilities which is currently vented to atmosphere. One of the largest gas-processing facilities in Otsego County generates about 1 billion cubic feet of CO2 each month on average over the last 10 years that has been vented to atmosphere.   The average CO2 vented to atmosphere each year from this facility is about 15 billion cubic feet and the average CO2 produced from the Antrim as a whole is about 21 billion cubic feet each year. This CO2 is high quality CO2 for pipelines at about 99% purity.(3)

CO2 map
This map shows locations of carbon storage field tests under the United States Department of Energy partnership program. Field tests are an essential step toward commercial deployment of #CCS technology. (source: U.S. Dept of Energy)

Let’s do some math to put Antrim CO2 production into perspective: If we convert 21 billion cubic feet of CO2 to pounds or tons, which is how most newspapers write about CO2 emissions, we have to multiply by a factor of 0.1146 and we get about 2.4 billion pounds of CO2 per year vented from the Antrim. If we divide that figure by 2,000 lbs per ton we get about 1.2 million tons of CO2 emitted to the atmosphere from Michigan’s Antrim Shale each year.

For comparison’s sake, the Monroe Power Plant, the biggest power plant in Michigan @ 3,300MW and powered by burning coal, emits about 34.8 billion pounds of CO2 per year to atmosphere, which is about 17.4 million tons. So, the Monroe Power Plant emits about 14 to 15 times more CO2 to atmosphere than the Antrim Shale as a whole. The Monroe Plant also emits about 104k tons of Sulphur Dioxide, 32k tons of Nitrous Oxides, and 780 lbs of Mercury to atmosphere. The Monroe Plant is ranked 7th in the United States for Carbon Dioxide emissions to atmosphere according to SourceWatch.  The Monroe Plant was ranked 11th in the US for GHG emissions in a September 29, 2016 @freep article you can read by clicking here.

Plants like the Monroe Power Plant and many more are what #CCS technology is really all about down the road.   Companies like Core Energy can use their knowledge and expertise to help reduce the CO2 emissions of plants like the Monroe Power Plant. This is the ultimate goal of #CCS ambitions and why the Department of Energy is helping to fund projects like those undertaken by Core Energy LLC in Northern Michigan. There will be many factors in reducing CO2 emissions from large emission sources but we are closer now than ever before to making these goals safe & economically feasible.

Recently RMP wrote about ExxonMobil & Fuel Cell energy teaming up to add molten carbonate fuel cells to a natural gas power plant in our Fuel Cells 101 post. There is perhaps no greater technology to get excited about than these molten carbonate fuel cells as their CO2 capture signature is like no other diagram out there: they create energy while concentrating CO2 rather than taxing the power plant of energy to capture CO2. Furthermore, molten carbonate fuel cells are modular and can be added as necessary to the power plant depending on the size of the plant thus making their economics better too.

What’s Next for #CCS Proliferation?

As we say repeatedly at RMP: always follow the money. The biggest hurdle with the ambitions of #CCS is and will always be cost.   We are in the nascent stages of #CCS now but these are exciting times for advancements in the entire scope of #CCS technology. Michigan is demonstrating itself as a leader in CO2 sequestration with Core Energy LLC’s work in Northern Michigan at the Dover 33 EOR Unit. Fuel Cell Energy in Danbury, Connecticut is demonstrating that molten carbonate fuel cells are a potential game changer for the mass adoption of #CCS because of their cost effectiveness on the “capture” side of CO2. ExxonMobil is providing financial support to small companies like Fuel Cell Energy to take technologies like molten carbonate fuel cells to the next level of mass adoption.

core energy
RMP covers energy for Michigan and the world. RMP has been writing about oil & gas and fuel cells and other topics like #CCS in Michigan for a long time. Many outlets in Michigan are turning to our organization to get the real data on what’s going on. We are out in the woods and we cover every corner of Michigan. This picture is of a Core Energy well which you can find on our map. RMP cares about Michigan and we are different than any environmental group you’ve ever seen. Follow us to keep up with what’s happening on the Michigan and global energy scene. (Photo Credit: Neo)

RMP is Michigan’s authority on sustainable energy production and you can follow us on Twitter or like us on facebook to get regular updates as we create new energy maps and blog about sustainable energy advancements. Stay tuned as RMP continues to cover developments in #CCS and other advanced energy technologies. RMP will be writing many more posts about #CCS as news and additional information becomes available.

Check Out RMP’s Carbon Dioxide Sequestration Wells in Michigan Map

RMP has been demonstrating our watchdog oil well mapping software since High Volume Hydraulic Fracturing (HVHF) came to Michigan.   We wanted to know where the HVHF wells were in our state and learn more about them but the maps just didn’t exist. We could not get straight answers to our many questions. Sure there was the MDEQ’s GeoWebFace and other mapping applications out there but we needed something more robust. That’s when RMP was born. I have been working as a watchdog regarding Michigan oil well data and writing my own software for about 7 years now and what separates RMP data from other data sources is our supplemental data table and exclusive software. By creating an RMP exclusive table that works in conjunction with MDEQ public data, has added hooks & sorting criteria to Michigan data you just can’t find anywhere else. Want to know which oils have ground water contamination issues? Want to know which wells target the Niagaran formation? Or which wells use CO2 EOR?   There is no other place on the web that can match the Michigan made mapping software exclusive to RMP. Our CO2 EOR map shown below is a great example of a map you just won’t find anywhere else on the internet.

RMP is a small and unfunded non-profit organization and I write this software in my free time. I have a full time job to pay my bills, but we really could use your financial support to get our organization to the next level. If RMP had funding to work full time and pay our volunteers, we could be a leader in environmental organizations in Michigan when it comes to helping Michigan make the transition to sustainable energy and high paying jobs for Michigan workers. RMP is a Michigan based 501(c)3 organization so if you can make a donation to help us continue and expand our organization your donation will be tax deductible. RMP is registered with the Michigan Attorney General’s office to solicit for your donations and we would really appreciate your support to expand what we do. Our overhead is next to nothing as we use all free software apps like PHP, JavaScript, MySQL, HTML, WordPress, and the Google Maps API to bring you this website for free. Our volunteers are also the best researchers in the state and every one of the “big” environmental organizations in Michigan comes to us when they need reliable fact base information. Check out the map below which shows all EOR CO2 wells in Michigan.  This map will evolve as the layout changes in our state and new information becomes available. Click here if you can afford to make a tax-deductible donation to respectmyplanet.org to help our organization grow.   Thank you.

donatebutton

RMP’s Interactive Map of Michigan’s Carbon Dioxide Sequestration Wells


Click Here To Enlarge RMP’s Michigan’s Carbon Dioxide Sequestration Wells Map

Click Here To Open RMP’s Michigan’s Carbon Dioxide Sequestration Wells Map Map In A New Full Screen Tab

 

Footnotes

1. Geologic Storage Options and Capacities for Carbon Dioxide
Sequestration in the Midwest Regional Carbon Sequestration Partnership
by MRCSP

2. Michigan Phase III Project Update by MRCSP – Note this is a dynamic link and numbers are updated monthly so the numbers quoted at the time of publication will not match the link depending on when you click the link.

3. Matthias Grobe, Jack C. Pashin, Rebecca L. Dodge, Carbon Dioxide Sequestration in Geological Media: State of the Science – American Association of Petroleum Geologists (2009) – Link to Book

Michigan Oil & Gas Monthly – August 2016

Each month respectmyplanet (RMP) recaps the past 30 days of oil & gas activity in the Michigan Basin. We cover new applications & permits to drill oil, gas, disposal, and storage wells and anything else hydrocarbon related. We recap oil & gas activity that happens in Michigan and publish this Michigan Oil & Gas Monthly (MOGM) magazine right here at the end of each month. You can follow us on Twitter by clicking here, or like us on facebook by clicking here and you won’t miss a publication. Our publications are free and always will be. Have a tip for us about a leaking tank or a spill near your house? Or, are you curious about something oil & gas related you see that you want us to dig into? Let us know by leaving a comment at the bottom of this article.

Michigan oil & gas has awoken from its 2016 slumber with August being a very Continue reading “Michigan Oil & Gas Monthly – August 2016”

Michigan Oil & Gas Monthly – July 2016

This month a group calling themselves the MICATS staged a protest at Attorney General Bill Schuette’s home in Midland, Michigan.  The Detroit News has a story here.

For the record, I have never supported extremist groups or individuals like those in MICATS and neither has respectmyplanet.org.  I don’t know them, affiliate with them, or in any way condone what they did.  RMP supports as part of our stated mission the migration away from oil as an energy source.   RMP supports ending oil pipelines that traverse our Continue reading “Michigan Oil & Gas Monthly – July 2016”

Michigan Oil & Gas Monthly – June 2016

In this month’s cover photo a buzzard flies past the flare stack at the Wessel et Al 2-6A oil well in Hillsdale, Michigan (PN#58992).   Buzzards seem to love to congregate around oil wells as they await their next meal’s demise.   A buzzard circling a Michigan oil well is a fitting analogy for the June 2016 edition of RMP’s MOGM as we have seen few vital signs in Michigan’s oil economy so far this year.  RMP wrote throughout the year in 2015 how it turned out to be the slowest year in Michigan’s history for oil & gas well permitting.  RMP also wrote in 2014 that the forecast of activity in the coming years for oil production in Michigan was bleak; and that’s when prices were over $100/bbl.  As it turns out, the numbers continue to Continue reading “Michigan Oil & Gas Monthly – June 2016”

Interactive Ann Arbor Dioxane Plume Map Demo

Update 6/14/2019 – The map in this post has been updated as of June 14, 2019 to our “Generation 2” style map.  This is the first fully interactive map of the three Gelman Dioxane 1,4 plumes, all of available locations, and their corresponding data.  Check out our new map below 🙂   CLICK HERE to read the new post showcasing RMP’s new generation 2 map.  Keep reading to read our original map post.  Thanks!

End Update from 6/14/2019


This post demonstrates a simple overlay on a Google Map using JavaScript.  The map image is anchored by latitude and longitude points onto a Google Map canvass.  Respectmyplanet.org is a Michigan based 501(c)3 non-profit dedicated to water conservation and sustainable energy production.   RMP makes maps using the Google Maps API v3 which is completely free to use for non-profit organizations like ours.   That’s great that it’s free because RMP is unfunded and we could not do what we do without Google’s free API.   The map shown below is Continue reading “Interactive Ann Arbor Dioxane Plume Map Demo”

Michigan Oil & Gas Production Report January – December 2015

2015 Michigan petroleum production numbers are approximately 98% reported as of today. RMP has always focused on the numbers as they are often greater than adjectives.   Opinions are overrated.  People want to hear the numbers and then decide for themselves.   This is RMP’s fifth year studying, parsing, organizing, compiling, and reporting numbers related to Michigan petroleum production. The information RMP publishes will always be free access to the public. RMP has always followed three fundamental tenets as a research and reporting philosophy:

  • It’s all about the rock. Always respect the geology.
  • Follow the money. Money talks.
  • Follow the wastewater. Waste means inefficiency and problems. Inefficiency and problems mean additional costs. With regard to costs, see point #2.

Following the money has proven to be difficult because of the voluminous and Continue reading “Michigan Oil & Gas Production Report January – December 2015”